Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Rep ; 14(1): 6491, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499619

RESUMO

The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Glucosiltransferases , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Biochem Pharmacol ; : 116161, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522556

RESUMO

Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38354897

RESUMO

Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.


Assuntos
Compostos de Bifenilo , Carbamatos , Depressão , Microbioma Gastrointestinal , Animais , Masculino , Ratos , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Lipidômica , Lipídeos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico
4.
J Chem Inf Model ; 63(21): 6900-6911, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910792

RESUMO

With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.


Assuntos
Receptor EphA2 , Receptor EphB2 , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor EphA2/antagonistas & inibidores , Receptor EphB2/antagonistas & inibidores
5.
Artigo em Inglês | MEDLINE | ID: mdl-37932554

RESUMO

RATIONALE: Exposure to traumatic events can lead to alterations in social and anxiety-related behaviors. Emerging evidence suggests that peripheral host-defense processes are implicated in the expression of stress-induced behavioral responses and may be targeted to mitigate the negative sequalae of stress exposure. OBJECTIVES: In this study, we used the peripherally restricted FAAH inhibitor URB937 to investigate the effects of the fatty acyl ethanolamide (FAE) family of lipid mediators - which include the endocannabinoid anandamide and the endogenous PPAR-α agonists, oleoylethanolamide and palmitoylethanolamide - on behavioral and peripheral biochemical responses to two ethologically distinct rat models of stress. METHODS: Male adult rats were exposed to acute social defeat, a model of psychological stress (Experiment 1), or to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a test of innate predator-evoked fear (Experiment 2), and subsequently treated with URB937 (1 or 3 mg/kg, intraperitoneal) or vehicle. Behavioral analyses were conducted 24 h (Experiment 1) or 7 days (Experiment 2) after exposure. RESULTS: URB937 administration prevented the emergence of both social avoidance behavior after social defeat stress and anxiety-related behaviors after TMT exposure. Further, URB937 administration blocked social defeat-induced transient increase in plasma concentrations of pro-inflammatory cytokines and the elevation in plasma corticosterone levels observed 24 h after social defeat CONCLUSIONS: Enhancement of peripheral FAAH-regulated lipid signaling prevents the emergence of stress-induced social avoidance and anxiety-like behaviors in male rats through mechanisms that may involve an attenuation of peripheral cytokine release induced by stress exposure.

6.
Microbiol Spectr ; : e0219423, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728335

RESUMO

The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.

7.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446625

RESUMO

Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure-activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Ligantes , Agonismo Inverso de Drogas , Relação Estrutura-Atividade , Piridinas , Receptor CB1 de Canabinoide
8.
Br J Pharmacol ; 180(10): 1316-1338, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526591

RESUMO

BACKGROUND AND PURPOSE: Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH: A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS: UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS: UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.


Assuntos
Endocanabinoides , Doenças Neuroinflamatórias , Ratos , Animais , Endocanabinoides/metabolismo , Receptores de Melatonina , Neuroproteção , Espectrometria de Massas em Tandem , Amidoidrolases , Inflamação/tratamento farmacológico , Alcamidas Poli-Insaturadas/metabolismo
9.
Eur J Med Chem ; 245(Pt 2): 114916, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36399878

RESUMO

Tuberculosis is one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extensively drug-resistant strains is a reason for concern. We have previously reported a series of substituted 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides with growth inhibitory activity against Mycobacterium tuberculosis strains and low propensity to be substrate of efflux pumps. Encouraged by these preliminary results, we have undertaken a medicinal chemistry campaign to determine the metabolic fate of these compounds and to delineate a reliable body of Structure-Activity Relationships. Keeping intact the (thiazol-4-yl)isoxazole-3-carboxamide core, as it is deemed to be the pharmacophore of the molecule, we have extensively explored the structural modifications able to confer good activity and avoid rapid clearance. Also, a small set of analogues based on isostere manipulation of the 2-aminothiazole were prepared and tested, with the aim to disclose novel antitubercular chemotypes. These studies, combined, were instrumental in designing improved compounds such as 42g and 42l, escaping metabolic degradation by human liver microsomes and, at the same time, maintaining good antitubercular activity against both drug-susceptible and drug-resistant strains.


Assuntos
Isoxazóis , Mycobacterium tuberculosis , Humanos , Isoxazóis/farmacologia , Antituberculosos/farmacologia , Relação Estrutura-Atividade , Química Farmacêutica
10.
Front Oncol ; 11: 760732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712616

RESUMO

The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients.

11.
Eur J Med Chem ; 225: 113786, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34464874

RESUMO

The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.


Assuntos
Lisina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ácidos Sulfínicos/farmacologia , Animais , Biocatálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química
12.
ChemMedChem ; 16(19): 3071-3082, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34213063

RESUMO

The MT2 -selective melatonin receptor ligand UCM765 (N-(2-((3-methoxyphenyl)(phenyl)amino)ethyl)acetamide), showed interesting sleep inducing, analgesic and anxiolytic properties in rodents, but suffers from low water solubility and modest metabolic stability. To overcome these limitations, different strategies were investigated, including modification of metabolically liable sites, introduction of hydrophilic substituents and design of more basic derivatives. Thermodynamic solubility, microsomal stability and lipophilicity of new compounds were experimentally evaluated, together with their MT1 and MT2 binding affinities. Introduction of a m-hydroxymethyl substituent on the phenyl ring of UCM765 and replacement of the replacement of the N,N-diphenyl-amino scaffold with a N-methyl-N-phenyl-amino one led to highly soluble compounds with good microsomal stability and receptor binding affinity. Docking studies into the receptor crystal structure provided a rationale for their binding affinity. Pharmacokinetic characterization in rats highlighted higher plasma concentrations for the N-methyl-N-phenyl-amino derivative, consistent with its improved microsomal stability and makes this compound worthy of consideration for further pharmacological investigation.


Assuntos
Acetamidas/química , Acetamidas/metabolismo , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Acetamidas/farmacocinética , Compostos de Anilina/farmacocinética , Animais , Humanos , Ligantes , Masculino , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismo , Solubilidade , Termodinâmica , Água/química
13.
ChemSusChem ; 14(12): 2591-2600, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905170

RESUMO

The identification of a green, versatile, user-friendly, and efficient methodology is necessary to facilitate the use of Heck-Cassar-Sonogashira (HCS) cross-coupling reaction in drug discovery and industrial production in the pharmaceutical segment. The Heck-Cassar and Sonogashira protocols, using N-hydroxyethylpyrrolidone (HEP)/water/N,N,N',N'-tetramethyl guanidine (TMG) as green solvent/base mixture and sulfonated phosphine ligands, allowed to recycle the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, and triflates. No catalyst leakage or metal contamination of the final product were observed during the HCS recycling. To our knowledge, a turnover number (TON) up to 2375, a turnover frequency (TOF) of 158 h-1 , and a process mass intensity (PMI) around 7 that decreased around 3 after solvent, base, and palladium recovery, represent one of the best results to date using a sustainable protocol. The Heck-Cassar protocol using sSPhos was successfully applied to the telescoped synthesis of Erlotinib (TON: 1380; TOF: 46 h-1 ).

14.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056098

RESUMO

UniPR129, an L-ß-homotryptophan conjugate of the secondary bile acid lithocholic acid (LCA), acts as an effective protein-protein interaction (PPI) inhibitor of the Eph-ephrin system but suffers from a poor oral bioavailability in mice. To improve UniPR129 bioavailability, a metabolic soft spot, i.e., the 3α-hydroxyl group on the LCA steroidal ring, was functionalized to 3-hydroxyimine. In vitro metabolism of UniPR129 and 3-hydroxyimine derivative UniPR500 was compared in mouse liver subcellular fractions, and main metabolites were profiled by high resolution (HR-MS) and tandem (MS/MS) mass spectrometry. In mouse liver microsomes (MLM), UniPR129 was converted into several metabolites: M1 derived from the oxidation of the 3-hydroxy group to 3-oxo, M2-M7, mono-hydroxylated metabolites, M8-M10, di-hydroxylated metabolites, and M11, a mono-hydroxylated metabolite of M1. Phase II reactions were only minor routes of in vitro biotransformation. UniPR500 shared several metabolic pathways with parent UniPR129, but it showed higher stability in MLM, with a half-life (t1/2) of 60.4 min, if compared to a t1/2 = 16.8 min for UniPR129. When orally administered to mice at the same dose, UniPR500 showed an increased systemic exposure, maintaining an in vitro valuable pharmacological profile as an EphA2 receptor antagonist and an overall improvement in its physico-chemical profile (solubility, lipophilicity), if compared to UniPR129. The present work highlights an effective strategy for the pharmacokinetic optimization of aminoacid conjugates of bile acids as small molecule Eph-ephrin antagonists.

16.
Eur J Pharm Sci ; 155: 105544, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927068

RESUMO

We report an in vitro phase I metabolism study on COR659 (1), a 2-acylaminothiophene derivative able to suppress alcohol and chocolate self-administration in rats, likely via positive allosteric modulation of the GABAB receptor and antagonism/inverse agonism at the cannabinoid CB1 receptor. Given the identification of the methyl ester group at C-3 of the thiophene ring as a metabolic soft spot, we also report the chemical optimization project aimed to balance metabolic stability with in vitro and in vivo potency on a set of 3-substituted COR659 analogues. High performance liquid chromatography coupled to tandem and high resolution mass spectrometry was employed for the characterization of in vitro metabolism and in vivo pharmacokinetics of COR659 in rats. In vitro [35S]GTPγS binding assays on stimulated GABAB and CB1 receptors, in combination with alcohol and chocolate self-administration experiments in rats, were employed to assess the pharmacological profile of this novel set of analogues, using COR659 as reference compound. Eight metabolites of COR659 were discovered in liver microsomal incubates; two of them (M1, M2) were identified by comparison with synthetic reference standards. M2, oxidation product of methyl group at C-5 of the thiophene ring, was a major metabolite in vitro, but showed a low systemic exposure in vivo. M1, cleavage product of the methyl ester group at C-3, revealed in vitro an unusual mechanism of metabolism by a NADPH-dependent route and, in vivo, it maintained high and persistent levels in plasma, which could represent a potential pharmacokinetic and toxicological issue. In the novel set of COR659 analogues, those bearing branched alkyl substituents on the ester group, showed an improved in vitro metabolic stability (2-4), had an in vitro GABAB PAM (2-4) and/or CB1 partial agonist/antagonist profile (2-3) and maintained the ability to reduce alcohol (2-4) and/or chocolate (4) self-administration in rats. Both PK and PD data ruled out any involvement of metabolite M1 in the in vivo potency of COR659 and 4. The present results, therefore, highlight the importance to design and synthesize novel compounds endowed with the dual activity profile and devoid of metabolic liabilities.


Assuntos
Preparações Farmacêuticas , Receptores de GABA-B , Animais , Etanol , Ratos , Autoadministração , Ácido gama-Aminobutírico
17.
ACS Med Chem Lett ; 11(7): 1435-1441, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676151

RESUMO

To obtain effective eradication of numerous infectious diseases such as tuberculosis, it is important to supply the medicinal chemistry arsenal with novel chemical agents. Isosterism and bioisosterism are widely known concepts in the field of early drug discovery, and in several cases, rational isosteric replacements have contributed to improved efficacy and physicochemical characteristics throughout the hit-to-lead optimization process. However, sometimes the synthesis of isosteres might not be as straightforward as that of the parent compounds, and therefore, novel synthetic strategies must be elaborated. In this regard, we herein report the evaluation of a series of N-substituted 4-phenyl-2-aminooxazoles that, despite being isosteres of a widely used nucleus such as the 2-aminothiazole, have been only seldom explored. After elaboration of a convenient synthetic strategy, a small set of 2-aminothiazoles and their 2-aminooxazole counterparts were compared with regard to antitubercular activity and physicochemical characteristics.

18.
J Clin Lipidol ; 14(4): 487-497.e1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32718857

RESUMO

BACKGROUND: Coronary artery disease (CAD) risk is greater with higher plasma lipoprotein(a)[Lp(a)] concentrations or smaller apoisoform size and putatively with increased cellular cholesterol loading capacity (CLC). The relationship between Lp(a) and CLC is not known. Information on Lp(a) polymorphisms in Italian patients is lacking. OBJECTIVE: The objective of this study was to determine relationships between Lp(a) and CLC, the impact of lipoprotein apheresis (LA), and describe the genetic profile of Lp(a). METHODS: We conducted a multicenter, observational study in Italian patients with hyperLp(a) and premature CAD with (n = 18)/without (n = 16) LA in which blood samples were analyzed for Lp(a) parameter and CLC. Genetic profiling of LPA was conducted in patient receiving LA. RESULTS: Mean macrophage CLC of the pre-LA serum was significantly higher than that of normolipidemic controls (19.7 ± 0.9 µg/mg vs 16.01 ± 0.98 µg/mg of protein, respectively). After LA, serum macrophage CLC was markedly lower relative to preapheresis (16.1 ± 0.8 µg/mg protein; P = .003) and comparable with CLC of the normolipidemic serum. LA did not significantly affect average apo(a) isoform size distribution. No anthropometric or lipid parameters studied were related to serum CLC, but there was a relationship between CLC and the Lp(a) plasma concentration (P = .035). DNA analysis revealed a range of common genetic variants. Two rare, new variants were identified: LPA exon 21, c.3269C>G, p.Pro1090Arg, and rs41259144 p.Arg990Gln, c.2969G>A CONCLUSIONS: LA reduces serum Lp(a) and also reduces macrophage CLC. Novel genetic variants of the LPA gene were identified, and geographic variations were noted. The complexity of these polymorphisms means that genetic assessment is not a predictor of CAD risk in hyperLp(a).


Assuntos
Apoproteína(a)/sangue , Remoção de Componentes Sanguíneos , Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Variação Genética , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Transporte Biológico/genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue
19.
J Med Chem ; 63(13): 7369-7391, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515588

RESUMO

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives. These new compounds are endowed with high affinity for the CB2R and moderate to good selectivity over the cannabinoid type-1 receptor (CB1R), associated with good physicochemical characteristics. As to the functional activity at the CB2R, compounds able to act either as agonists or as inverse agonists/antagonists were discovered. Among them, compound 51 emerged as a potent CB2R agonist able to reduce pain in rats carrying OA induced by injection of monoiodoacetic acid (MIA).


Assuntos
Antiasmáticos/farmacologia , Condrócitos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , 4-Quinolonas/química , Animais , Antiasmáticos/química , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/farmacologia , Condrócitos/metabolismo , Condrócitos/patologia , Colforsina/farmacologia , Cricetulus , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ácido Iodoacético/toxicidade , Ligantes , Masculino , Camundongos , Células NIH 3T3 , Osteoartrite/induzido quimicamente , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Relação Estrutura-Atividade , Caminhada
20.
Eur J Med Chem ; 189: 112083, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000051

RESUMO

The EphA2 receptor has been validated in animal models as new target for treating tumors depending on angiogenesis and vasculogenic mimicry. In the present work, we extended our current knowledge on structure-activity relationship (SAR) data of two related classes of antagonists of the EphA2 receptor, namely 5ß-cholan-24-oic acids and 5ß-cholan-24-oyl l-ß-homotryptophan conjugates, with the aim to develop new antiangiogenic compounds able to efficiently prevent the formation of blood vessels. As a result of our exploration, we identified UniPR505, N-[3α-(Ethylcarbamoyl)oxy-5ß-cholan-24-oyl]-l-ß-homo-tryptophan (compound 14), as a submicromolar antagonist of the EphA2 receptor capable to block EphA2 phosphorylation and to inhibit neovascularization in a chorioallantoic membrane (CAM) assay.


Assuntos
Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/normas , Ácido Litocólico/química , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor EphA2/antagonistas & inibidores , Inibidores da Angiogênese/química , Animais , Proliferação de Células , Embrião de Galinha , Galinhas , Membrana Corioalantoide , Humanos , Masculino , Modelos Moleculares , Fosforilação , Compostos Policíclicos/química , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/normas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...